1st Stage
- class rsdtlib.Retrieve(starttime, endtime, aoi, shconfig)
Class for downloading observations from Sentinel Hub (https://www.sentinel-hub.com/).
- Parameters:
starttime (datetime.datetime) – Starting time of the time series to retrieve
endtime (datetime.datetime) – End time of the time series to retrieve
aoi (str) – Area of Interest (path to shape file)
Example:
Define a download of observations in the time frame 01-01-2017 to 01-07-2017 from Sentinel Hub for the Area of Interest (AoI) defined in the shape file
ostrava.shp
. An account on Sentinel Hub is required for which theshconfig
provides the access credentials.import rsdtlib from dateutil.parser import isoparse from sentinelhub import SHConfig # Credentials to access Sentinel Hub. See instructions: # https://github.com/sentinel-hub/eo-learn/blob/master/examples/README.md shconfig = SHConfig() shconfig.instance_id = "<YOUR INSTANCE ID>" shconfig.sh_client_id = "<YOUR CLIENT ID>" shconfig.sh_client_secret = "<YOUR CLIENT SECRET>" # Just a small area in Ostrava/CZ my_aoi = "./ostrava.shp" retrieve = rsdtlib.Retrieve( starttime=isoparse("20170101T000000"), endtime=isoparse("20170701T000000"), aoi=my_aoi, shconfig=shconfig)
- get_images(datacollection, dst_path, maxcc=1.0)
Download the observations for the specified remote sensing type
datacollection
and maximum cloud coveragemaxcc
(if applicable). The observations are stored on the filesystem atdst_path
.- Parameters:
datacollection (sentinelhub.DataCollection) – Data collection to download
dst_path (str) – Path on filesystem to store observations at
maxcc (float) – Maximum cloud coverage (default =
1.0
)
- Returns:
Number of retrieved observations
- Return type:
int
Example:
Start the download of the AoI and time frame specified in the object retrieve. Sentinel Hub’s data collection
SENTINEL1_IW_ASC
is specified to retrieve Sentinel 1 observations in ascending orbit direction. The retrieved observations are stored in pathdst_s1_asc
.from sentinelhub import DataCollection dst_s1_asc = "<PATH FOR OBSERVATIONS>" num_down = retrieve.get_images( datacollection=DataCollection.SENTINEL1_IW_ASC, dst_path=dst_s1_asc)
- class rsdtlib.Convert(dst_path, aoi, normalize=255.0)
Class for converting GeoTIFF files to EOPatches.
- Parameters:
dst_path (str) – Path on filesystem to store the converted observations at
aoi (str) – Area of Interest (path to shape file)
normalize (float) – Divisor to use for normalization (e.g., 255.0 for 8 bit unsigned integer types)
Example:
Define a conversion of observations for the Area of Interest (AoI) defined in the shape file
ostrava.shp
. The converted observations are stored in in pathdst_path
.import rsdtlib dst_path = "<PATH FOR OBSERVATIONS>" # Just a small area in Ostrava/CZ my_aoi = "./ostrava.shp" convert = rsdtlib.Convert( dst_path=dst_path, aoi=my_aoi)
- process(root_path, bands_tiff, mask_tiff, timestamp)
Start the conversion process. Merge the GeoTIFF with the bands
bands_tiff
and the GeoTIFF containing a maskmask_tiff
from the same directoryroot_path
. Annotate the result with a timestamptimestmap
and store it as a single EOPatch.- Parameters:
root_path (str) – Root directory of all GeoTIFF files
bands_tiff (str) – Filename of the GeoTIFF containing the bands
mask_tiff (str) – Filename of the GeoTIFF containing the mask
timestamp (datetime.datetime) – Timestamp of the converted observation
- Returns:
EOPatch object
- Return type:
eolearn.core.EOPatch
Example:
Convert observations as specified in the object
convert
. This is called for every single observation provided as two GeoTIFF files from theroot_path
. One contains the contents (bands_tiff
) and one the data mask (mask_tiff
). A timestamp is assigned viatimestamp
.root_path = "<ROOT OF GEOTIFFS>" sample = convert.process( root_path=root_path bands_tiff="19931010T090051.TIF", # LS5 TM 7 bands mask_tiff="19931010T090051_QA.TIF", # LS5 TM QA band timestamp="19931010T090051")